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abstract: Several studies have documented a global pattern of phe-
nological advancement that is consistent with ongoing climate change.
However, the magnitude of these phenological shifts is highly variable
across taxa and locations. This variability of phenological responses
has been difficult to explainmechanistically. To examine how the evo-
lution of multitrait cueing strategies could produce variable responses
to climate change, we constructed a model in which organisms evolve
strategies that integrate multiple environmental cues to inform antic-
ipatory phenological decisions.We simulated the evolution of pheno-
logical cueing strategies in multiple environments, using historic cli-
mate data from 78 locations in North America and Hawaii to capture
features of climatic correlation structures in the real world. Organisms
in our model evolved diverse strategies that were spatially autocorre-
lated across locations on a continental scale, showing that similar strat-
egies tend to evolve in similar climates. Within locations, organisms
often evolved a wide range of strategies that showed similar response
phenotypes and fitness outcomes under historical conditions. How-
ever, these strategies responded differently to novel climatic conditions,
with variable fitness consequences. Our model shows how the evolu-
tion of phenological cueing strategies can explain observed variation
in phenological shifts and unexpected responses to climate change.

Keywords: phenological shifts, climate change, evolved cueing strat-
egies, cryptic genetic variation, novel climates, cue integration.

Introduction

Recent years have seen increasing interest in the study of
phenological shifts.While organisms around the world have
generally shown a “globally coherent fingerprint” of advanc-
ing phenology with climate change (Parmesan and Yohe
2003; Parmesan 2007; Thackeray et al. 2010), several studies
also point to substantial unexplained variation in phenolog-
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ical shifts (Parmesan 2007; Thackeray et al. 2010; Pearse et al.
2017). This variation in the responses to climate change is
an important factor driving phenological mismatch and
the disruption of species interactions (Parmesan 2006; Kha-
rouba et al. 2018). It has become increasingly clear that un-
derstanding how organisms integrate multiple environmen-
tal cues will be necessary to anticipate phenological shifts
(Forrest and Miller-Rushing 2010; Visser et al. 2010; Pau
et al. 2011; Chmura et al. 2019).
Although several studies have suggested factors that cor-

relate with variation in phenological shifts (e.g., Parmesan
2007; Thackeray et al. 2010), relatively few studies have ex-
aminedmechanistic explanations for this variation (Chmura
et al. 2019). For example, while taxonomic groupings are
often strong predictors of phenological shifts (Parmesan
2007; Davis et al. 2010; Thackeray et al. 2010, 2016; Davies
et al. 2013), themechanisms behind these groupings remain
idiosyncratic or unclear (e.g., Parmesan 2007; Thackeray
et al. 2010). The mechanisms for other proposed explana-
tory factors are similarly unresolved. Chmura et al. (2019)
reviewed nine factors that have been suggested to structure
variation in phenological shifts (including latitude, eleva-
tion, habitat, trophic level, life history, specialization, sea-
sonal timing, thermoregulation, and generation time) and
concluded that most studies either do not suggest specific
underlying mechanisms or do not evaluate alternative mech-
anistic hypotheses.
Our current study builds on previous modeling studies

that exploredphenological cueing strategies in a general con-
text. These studies represent a progression from single-cue
tomulticuemodels and towardmore realistic environmen-
tal conditions. For example, Reed et al. (2010) used an
individual-basedmodel to examine plastic responses to sim-
ulated variation in a single cue and found that plasticity buff-
ered fitness from environmental variation if the cue pro-
vided reliable information about environmental conditions
but had the opposite effect when the correlations between
cues and conditions were weakened or when environmental
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variability was high. McNamara et al. (2011) developed
a general analytical model based on a regression and corre-
lation framework to explore the relationship between cues
and optimal phenological timing under changing environ-
ments and showed that environmental changes can affect
the information value of cues in complex ways; as a result,
they suggest that multiple cues could provide more robust
predictive power than single cues (see also Tauber and
Tauber 1976; Danks 2007; Marchin et al. 2015). Chevin
and Lande (2015) developed a multicue model to evaluate
the evolution of multiple reaction norms in response to
simulated environmental variation that included multiple
correlated but fluctuating cues. This work showed that sin-
gular reaction norms can evolve to show plasticity that
appears maladaptive when evaluated outside the multicue
context, as a result of the correlated nature of environmen-
tal cues.
Here we present a generalized model that demonstrates

how the evolution of integrated multitrait cueing strategies
can yield variable phenological responses to climate change.
This model advances key themes established in previous
studies by allowing cue integration strategies to evolve in
the context ofmore complex real-world environmental con-
ditions.While previousmodeling studies show that optimal
multicue integration strategies dependon correlations among
environmental cues (e.g., Chevin and Lande 2015), those
results were based on simulated environments with known
correlations. Our model aims to examine general mecha-
nisms that emerge when organisms evolve to use the pre-
dictive information within real-world climatic data from
different locations. Real-world climatic data are character-
ized by complex correlations among variables, and we as-
sume that this correlation structure varies across locations,
with relatively similar properties in nearby locations and
increasingly different properties in distant locations. Spe-
cifically, we examine how phenological cueing strategies
could evolve to use correlations among climate variables
to anticipate future events and how these evolved strategies
could contribute to observed phenological variation when
historical correlations among climatic variables are disrupted.
Wehypothesized that variation in cueing strategies could

arise if organisms experiencing different environmental
histories evolve different phenological strategies, caused by
consistent differences in the reliability of predictive infor-
mation provided by different kinds of environmental cues
(Reed et al. 2010; McNamara et al. 2011; Chevin and Lande
2015). If the evolution of phenological cueing strategies was
shaped by past environmental conditions in predictable
ways, we expected that similar phenological strategies would
evolve when organisms experienced similar historical cli-
mates. Conversely, variation among evolved strategies could
persist under the same historical climate if different strate-
gies were able to yield similar fitness outcomes. We further
hypothesized that variation among evolved cueing strate-
gies in their reliance on climatic and nonclimatic cues
could contribute to observed variation in phenological re-
sponses to climate change (Bonamour et al. 2019; Chmura
et al. 2019).

Model and Methods

Ourmodel simulates the evolution of a generalized, annual,
asexually reproducing organism in a simplified environ-
ment defined by daily maximum temperature, total daily
precipitation, and day of the year (hereafter, temperature,
precipitation, and day, respectively). These conditions pro-
vide cues to anticipate future environmental conditions
and determine the fitness of individuals in the population
(fig. 1).
Our model combines the following three key features:

(1) organisms combinemultiple environmental cues using
a weighted sum, (2) organisms make a phenological deci-
sion in response to a threshold of this weighted sum, and
(3) organismal sensitivity to each environmental cue is
an evolved trait. Each of these features has been described
across a wide range of organisms in nature (Gu et al. 2008;
Wilczek et al. 2010; Burghardt et al. 2014; Seeholzer et al.
2018).We implemented the simulationmodel and all anal-
yses in R (R Core Team 2019).
Cue Integration

In our model, the set of environmental cues E is com-
posed of cumulative annual daily maximum temperature
(gtemp), cumulative annual daily precipitation (gprecip),
and day of the year (gday):

E p [gtemp, gprecip, gday]: ð1Þ
The set of environmental cues begins to accumulate on the
first day of each year, and the cues change each day in each
year of each location based on historical climatic data (we
omit daily, yearly, and location subscripts for simplicity
in this notation; see “Environmental Data” below). The
use of cumulative annual temperature and precipitation
assumes that organisms are aware of and can be influenced
by past environmental conditions, consistent with degree-
daymodels of development and phenology.Day of the year
provides a proxy for a consistent and nonclimatic environ-
mental cue, assuming that organisms are able to infer the
day of the year (e.g., from photoperiod) with equal accuracy
across all locations.Although theamplitudeof seasonal pho-
toperiodic changes is larger at higher latitudes, this assump-
tion is supported by studies showing that tropical species
are able to detect extremely small changes in photoperiod
near the equator (Hau et al. 1998; Dawson 2007). More fun-
damentally, this assumption allows us to conservatively infer
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Figure 1: Schematic diagram of the model. A, Genotypes combined with environmental cues (including cumulative annual daily temperature
maximums, cumulative annual daily precipitation totals, and day of year) result in expressed phenotypes (day of response). B, Trait effect
(Τ ), the proportional contribution of each trait to the response decision (a representation of the interaction between genotype and environment),
can be expressed as a composition and presented on a ternary plot. C, Fitness of different phenotypes is determined by climatic (temperature and
moisture) conditions during a 10-day window after the response threshold is crossed. A lottery model of reproduction determines the number of
offspring produced by each individual, andmutation results in new genotypes for the next generation.D, Selection results in evolved phenological
cueing strategies that anticipate favorable conditions and avoid unfavorable conditions. The solid blue line represents the long-term expected fit-
ness outcome for each day under historical conditions, while the dotted black lines represent the fitness outcomes for the first and last year of the
simulation for the left and right panels, respectively. The black arrows at the top of each panel represent the response day of each individual of the
population. Initially, the timing of phenological response is spread across the year, but after 1,000 generations of selection, most of the population
shows similar phenological timing. This example shows the results of one simulation using climatic data from Davis, California.
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the relative information content of a climatically invariant
cue across multiple locations, separate from the effect of in-
creasing photoperiodic amplitude at higher latitudes. Using
actual cumulative photoperiod produced qualitatively simi-
lar results (e.g., fig. S1; figs. S1–S17 are available online).
Each individual in our model has a genotype (G) de-

fined by three traits (t), which reflect its phenological
sensitivity (sensu Chmura et al. 2019) to the three envi-
ronmental cues:

G p [ttemp, tprecip, tday]: ð2Þ
Each day of the simulation, each individual combines its
cues and genotype into a weighted sum, which represents
the response sum (S):

S p
gtemp

ttemp

1
gprecip

tprecip
1

gday

tday
: ð3Þ

On the first day of the year when this sum exceeds the re-
sponse threshold S ≥ 1, the organismmakes an irreversible
phenological decision in anticipation of future fitness con-
ditions. The genotypeG thus represents the inverse weights
of our weighted sum. We use 1=t as the weight for the re-
sponse sum for interpretability and consistency; genotypic
traits are represented in the same units as the cue itself, and
trait values indicate the critical cue value that would trigger
a phenological response in the hypothetical absence of other
cues. This also means that fixed increases or decreases to
traits have the same effect regardless of trait value (e.g., in-
creasing tday by 1 means that in the absence of other cues,
the organismwould respond1day later, regardless ofwhether
tday was previously 1 or 100). As a consequence, large trait
values correspond to low sensitivity, and low trait values
correspond to high sensitivity. Additive models of cue in-
tegration like this have been described in many organisms
(Ernst andBanks 2002; Gu et al. 2008; Seeholzer et al. 2018),
and similar assumptions have been applied in previousmod-
els (e.g., Jong 1990; Scheiner 1993; Lande 2009; Chevin and
Lande 2015). While many organisms are likely to use more
complex phenological cueing strategies across their life his-
tory (i.e., using multiple cues sequentially, as with chilling
requirements for germination), additive models of cue in-
tegration provide a simple, commonly used, and plausible
representation of howmultiple cues are combined to form
complex phenological cueing strategies.

Fitness

Individuals reproduce at a rate proportional to the sum
of the daily fitness they accrue over a fixed window starting
1 day after exceeding their response threshold. The fitness
gained on any given day is the product of two skew-normal
function outputs: one based on temperature, the other on
moisture (see eq. [4]). These two fitness functions are com-
bined to yield a two-dimensional fitness surface akin to a
quantitative version of a two-dimensional Hutchinsonian
niche (e.g., fig. S2; Hutchinson 1957). Our model assumes
that these two fitness factors interact multiplicatively rather
than additively, so that favorable conditions in both dimen-
sions are nonsubstitutable requirements for fitness, consis-
tent with the Hutchinsonian niche concept. We used a
skew-normal distribution because the thermal performance
curves of ectotherms are generally asymmetrical, where fit-
ness increases gradually as temperature increases toward
the optimum and then declines sharply above the optimum
(Huey and Stevenson 1979; Sinclair et al. 2016). For sim-
plicity, we used the same skew-normal functional form
(with a skew parameter of 210) for both temperature and
moisture, though this model showed qualitatively similar
results with alternative fitness functions (see the appendix,
“Sensitivity Analyses”). Environmental moisture (m) was
calculated based on daily precipitation totals (p) using a for-
mula that includes a proportional retention constant (a) to
represent the partial retention of moisture in the surround-
ing environment over time, as well as the input of new pre-
cipitation each day (eq. [4]):

mt p mt21a1 pt: ð4Þ
We set the retention constant to 0.8 in our simulations (see
the appendix, “Sensitivity Analyses”). At its limits, a p 0
represents daily precipitation, and a p 1 represents cu-
mulative annual precipitation. We use a p 0:8 to reflect
the assumption that organismal activity typically depends
on moisture retained in the environment rather than daily
precipitation. In contrast, cumulative annual precipitation
was used in the cue integration model to reflect the assump-
tion that organisms are aware of accumulated environmental
information throughout the year. Changing the retention
constant for environmental moisture produced qualitatively
similar results, even when a p 0.
Temperature and moisture performance functions were

parameterized separately for each location, such that the
peak for each occurred at the 90th percentile of all daily ob-
servations for a given location and each function had a
value that was 10% of the peak when the cue was at the
10th percentile of all daily observations. This parameteri-
zation assumes that potential fitness values are maximized
under relatively warm and moist conditions at each loca-
tion.However, this approach applies equallywell to locations
that are not characterized by these combined conditions be-
cause we simulate reproduction using a lottery model based
on relative, realized fitness. Parameterizing by location with-
out assuming performance constraints across sites (e.g., a
universal minimum or maximum temperature across all
locations) allows the interpretation of spatial patterns in
evolved cue use without confounding differences in perfor-
mance curves. This approach assumes that organisms are
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locally adapted to climatic conditions in a comparable way,
so that evolved differences between locations are likely to
be conservative, comparedwith amodel in which universal
constraints affect locations differently. To evaluate the ro-
bustness of observed results, we tested thismodel at a range
of alternative fitness parameterizations, including different
optimal quantiles, and observed qualitatively similar re-
sults (see the appendix, “Sensitivity Analyses”).
The raw fitness of each individual (Wi) was calculated as

the sum of these daily fitness payoffs over a 10-day window
beginning 1 day after the response sum exceeded the re-
sponse threshold (e.g., fig. S3). These raw fitness values
combine the products of two probability densities and pro-
vide a relative measure of fitness; they have inherently
small values and are not scaled to reflect expected numbers
of offspring. Our model assumes a relatively short fitness
accumulation window each year, where this window could
represent any period when environmental conditions have
a strong effect on fitness in the life history of our model or-
ganism. For example, it could represent the entire active,
nondiapause phase of an organism’s life history or a short
period of establishment in a longer life history (i.e., a sea-
sonal window of opportunity sensu Yang and Cenzer 2020);
for simplicity, we assume that environmental conditions
do not have fitness effects outside of this window. Varying
the duration of this window produced qualitatively similar
results (see the appendix, “Sensitivity Analyses”). We use
the sum of daily fitness payoffs to represent systems where
the fitness benefits of favorable conditions accumulate over
a window of time; while this is likely to represent some sys-
tems well, it would not adequately represent systems where
daily fitness effects are multiplicative (e.g., a system in which
a single extreme frost event has the potential to persistently
damage flowers). We set this fitness window to begin 1 day
after the response threshold is exceeded in order to simu-
late a delayed developmental process that requiredminimal
anticipatory forecasting. Functionally, this 1-day lag re-
duced the overall correlation between observed cues and
experienced conditions. Increasing this lag further makes
it more difficult for strategies to anticipate future condi-
tions but does not qualitatively change the behavior of this
model (see the appendix, “SensitivityAnalyses”).All organ-
isms in this model were constrained to have annual life
histories with one generation per year; organisms that did
not respond by the end of the year received zero fitness. This
constraint prevented the evolution of multiple generations
per year or multiannual life histories, allowing us to focus
on the seasonal phenology of relatively short-lived annual
organisms.
Individuals reproducedasexuallywithmutation (see “Her-

itability and Mutation”), with population size held con-
stant and expected realized fitness of each individual pro-
portional to its calculated relative fitness. Reproduction was
implemented as a lottery model to incorporate competi-
tion and allow for demographic stochasticity. With a con-
stant population size each generation, individuals compete
for representation in the next generation, with their prob-
ability of representation proportional to their raw fitness
value (Wi). For each evolved strategy (genotype) in the fi-
nal generation, we calculated the geometric mean of its
raw fitness across all years of environmental conditions. This
fitness was proportional to its expected long-term relative fit-
ness in that environment.

Heritability and Mutation

Offspring were given the same genotypes as their parent,
modified by mutation. We modeled mutation by adding
small random numbers (drawn from a normal distribution
with a mean of zero and a small standard deviation) to the
parental traits. We set the standard deviation of mutation
for each trait to be 0.5% of the overall cue range in order to
produce mutation distributions with the same expected ef-
fect size in each location. In the case of the day cue, we used
360 as themaximum, leading to a standard deviation of 1.8
for mutation rate of the day trait in all locations. We as-
sumed that each trait mutated for each individual in order
to increase the overall rate of simulated evolution and im-
prove computational efficiency.

Environmental Data

All available years of dailymaximum temperature (7C) and
daily precipitation (mm rainfall equivalent) data were ob-
tained from the NOAA Climate Data Online portal (NCEI
2018) for 82 locations in North America and Hawaii. Lo-
cations were chosen to ensure spatial representation across
the range of available data. After filtering for data quality
and imputing missing daily values (see the appendix, “En-
vironmental Data”; the appendix is available online), we
arrived at a climatic data set of daily maximum temper-
atures and daily precipitation for 78 locations, with an
average duration of 98 years (SD p 18:9 years, interquar-
tile rangep 114–84 years; see supplemental table 1, avail-
able online).
To ensure that cue values were always nonnegative, the

temperatures for each location were shifted so that the min-
imum transformed temperature for that location was zero.
Day of the yearwas represented as an integer value reflecting
the number of days since January 1 of each year inclusive.
The 366th day was truncated from leap years in the data set.

Initialization and Execution

For each location, we ran 60 simulations with the same pa-
rameter set (see data deposited in the Dryad Digital Repos-
itory, https://doi.org/10.25338/B8TG95; Edwards andYang

https://doi.org/10.25338/B8TG95
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2020).Each simulation included 1,000 years (i.e., 1,000 gen-
erations) of climatic data independently resampled from
the historic data set with replacement; as a result, the cli-
matic history for each simulation was different but drawn
from the samehistorical climate distribution for that location
(fig. 1; supplemental table 1). Each simulation maintained
a population of 500 individual organisms with individual
genotypes. In the initial generation of each simulation, each
individual was assigned uniform random trait values be-
tween 0 and 4 times themaximumcue value in that location
(or 360 in the case of the day cue). This resulted in an initial
population of individuals with a broad range of trait values
(e.g., figs. 1D, S4). Each simulation proceeded with the ex-
pression of a phenotype, accumulation of resulting fitness
payoffs, differential reproduction in a lottery model, and
mutation in each generation. Thus, each simulation reflects
a unique realization of the climatic history from a given lo-
cation, with a randomly generated initial population. These
simulations could be interpreted as replicates in an evolu-
tionary experiment with systematic differences in the cli-
matic means of locations and stochastic variation in the spe-
cific sequence of climatic years and the specific genotypes of
the initial population. Alternatively, each simulation could
be interpreted as separate species that experience the same
climate regime andhave the same temperature andmoisture
requirements.

Assessing Realized Relative Cue Use

Trait values represent cue sensitivity; in our model, these
can be interpreted as threshold values that would trigger
a phenological response in the absence of other cues. Thus,
the same trait values produce different behavior in differ-
ent locations, depending on the environment. In order to
compare strategies across locations, we define the trait ef-
fect (Τ) as ametric of proportional cue use. Each trait effect
is a value from 0 to 1 that quantifies a strategy’s realized re-
liance on a given cue in a way that is comparable across lo-
cations. Specifically, this metric represents the proportion
of the response sum S that is contributed by each g=t term
of equation (3) on the day the response threshold is ex-
ceeded. Together, the trait effects of all three cues form a
mathematical composition (here, a vector that sums to 1)
that represents a realized cueing strategy. Thus, we calcu-
late mean strategies within simulations and locations, us-
ing Aitchison compositional means (van den Boogaart and
Tolosana-Delgado 2013), and plot these compositional
means on ternary plots to show the three components of
each strategy.

Climate Change Scenarios

We examined how the individuals from the final genera-
tion of each simulation performed in novel climate regimes
using two simple climate change scenarios. In the shift sce-
nario, we advanced the historic temperature and precipi-
tation regime in each year by 5 days. In the warming sce-
nario, we increased all daily temperatures by 37C and left
the precipitation regime unchanged. These two scenarios
are not intended to represent detailed or realistic climate
change scenarios; instead, they reflect exposure to novel
climates using a simple and systematic erosion of the key
correlations in historical climatic data. In the shift scenario,
the historical correlations between climatic conditions
(temperature and moisture regime) and day of the year
are weakened, but the key correlation between the temper-
ature and moisture regimes is maintained. Because of this,
the seasonal fitness landscape (the time series of potential
daily fitness payoffs) in any given year remains unchanged,
except that it is advanced by 5 days. In contrast, the warm-
ing scenario weakens historical correlations with tempera-
ture relative to the other two environmental cues and also
fundamentally changes the seasonal fitness landscape in
any given year. Thus, while these two novel climate sce-
narios both represent important departures from the his-
torical climate regime, thewarming scenario presents amore
profound departure from historical seasonal fitness land-
scapes. In both scenarios, we calculated the response day
and fitness that would have been realized for each individ-
ual of our final populations in each unique year of themod-
ified climate regime for each of 30 simulations. This allowed
us to assess how climate change affected the phenotype and
fitness consequences of each genotype that evolved under his-
torical conditions.
For both climate change scenarios, we assessed correla-

tions between each historic trait effect (Τ) and the change
in response day and between each trait effect and the change
in geometric mean fitness for each evolved genotype. We
used linear mixed models with location as a random fac-
tor, allowing intercepts and slopes to vary. For these anal-
yses, we report effect sizes (b) as the slope coefficient of
each fixed explanatory factor; in these analyses, the effect
size represents the expected change in response day or
geometric mean fitness with a one-unit change in the trait
effect.
Sensitivity Analyses

We tested several model structures, cues, and parameter
values to assess the robustness of our results (see the ap-
pendix, “Sensitivity Analyses”).
Results

Inmany simulations, populations evolved to a region of suc-
cessful trait combinations relatively quickly, with selection,
mutation, and drift leading to gradual shifts in the average



Evolved Cue Use Leads to Variable Shifts E000
population genotype, as well as the branching and prun-
ing of lineages over time (e.g., fig. S4). Some simulations
experienced large shifts in trait use over time, often with
concurrent changes ramifying acrossmultiple traits. The in-
dividuals in the final generation of any single simulation
typically emerged from the dominant evolved lineage and
showed similar combinations of traits. Thus, individual var-
iation within each simulation was well represented by the
mean strategy for that simulation.
Variation within Locations

Mean evolved strategies often showed considerable varia-
tion between simulations, within locations. This variation
in strategies can be observed in ternary plots of trait effects
(figs. 2A–2D, S5) and mapped to locations (fig. S6). While
some locations evolved tight clusters of similar strategies,
most locations show a broad range of strategies using differ-
ent sets of cues. These diverse strategies often showed geo-
metric mean fitnesses that were similar to the fittest mean
genotype across all simulations (figs. 2A–2D, S5, S7). This
occurred because most locations were characterized by high-
performance fitness volumes that spanned a wide range
of trait values, rather than a single clear optimal strategy.
In three-dimensional trait space, these high-performance
fitness volumes resembled the hull of a boat or layers in
a quartered onion (figs. 2E–2H, S8E–S8H), reflecting a wide
range of evolved cueing strategies with similarly high geo-
metric mean fitnesses (figs. S7, S9). These broad regions
of trait space yielded similar fitness outcomes because they
produced similar phenological behavior under historical
conditions (figs. 2I–2L, S8I–S8L).
Variation between Locations

We found considerable spatial variation in themean evolved
strategies across locations. Spatial patterns in mean cue use
are visible when mapped (fig. 3A) and showed strong posi-
tive autocorrelation on a continental scale (fig. 3B–3D). This
result indicates that similar mean strategies evolved under
similar climates, suggesting a degree of underlying predict-
ability in the evolution of phenological cueing strategies,
despite the variability of evolved strategies among simula-
tions within each location.
We analyzed several climatic and location variables as

potential correlates of evolved mean cue use at each loca-
tion (appendix, “Analysis of Explanatory Factors”; figs. S10,
S11). While several factors emerged as potentially mean-
ingful predictors of phenological cue use in this analysis,
most of the variation in cue use was unexplained even in
models that combined all 17 factors (Τday, marginal R2 p
0:102; Τtemp, marginal R2 p 0:110; Τprecip, marginal R2 p
0:308).
Responses to Climate Change Scenarios

In the shift climate change scenario, populations generally
advanced their mean phenology but showed highly vari-
able changes in their realized fitness when comparing be-
tween (fig. 4A) and within (fig. 5A, 5C, 5E, 5G) locations.
These effects were nonrandom; as expected, organisms that
relied more on day cues were less likely to advance their
phenology on pace with the changed climate (b p 4:6 days
per unit Τ, SE p 0:02, P ! :0001), while organisms that
relied more on temperature or precipitation cues were more
likely to advance their phenology (temperature, b p 22:5
days per unit Τ, SE p 0:19, P ! :0001; precipitation, b p
22:2 days per unit Τ, SE p 0:1, P ! :0001). Because the
seasonal fitness landscape retained the same shape but
advanced by 5 days in this scenario, organisms that relied
more on day cues generally showed a weak pattern of more
negative fitness consequences (b p 20:00023 units Wi

per unit Τ, SE p 0:00007, P p :0009; fig. 4A), while those
that relied more heavily on temperature or precipitation
cues showedweakly positive fitness consequences (temper-
ature, b p 0:00017 units Wi per unit Τ, SE p 0:00005,
P p :002; precipitation, b p 0:00009 units Wi per unit
Τ, SE p 0:00005, P p :04). While most locations experi-
enced a reduced mean fitness under the changed climate,
some locations showed higher overall fitness (fig. 4A). Sim-
ulations within locations showed similarly variable responses
in both advancement and fitness (fig. 5A, 5C, 5E, 5G).
The behavior of individual genotypes within each location
(fig. S12A) shows how small changes in phenological re-
sponse phenotype can drive large changes in mean fitness
outcomes under the shift scenario.
Under the warming scenario, populations also advanced

their mean phenology, both between (fig. 4B) and within
(fig. 5B, 5D, 5F, 5H) locations. Mean strategies with greater
reliance on day or precipitation cues showed reduced phe-
nological advancement (day, b p 8:1 days per unit Τ,
SE p 1:2, P ! :0001; precipitation, b p 7:7 days per unit
Τ, SE p 1:0, P ! :00001), while those that relied more on
temperature showed greater phenological advancement
(temperature, b p 215:4 days per unit Τ, SE p 1:5,
P ! :00001). This effect of day was more apparent in the
shift scenario than the warming scenario when comparing
across locations (fig. 4A vs. fig. 4B) but is apparent in both
scenarios when comparing within locations (fig. 5). Organ-
isms with greater reliance on day and precipitation showed
higher fitness in the warming scenario (day, b p 0:0006
units Wi per unit Τ, SE p 0:0002, P p :0026; precipita-
tion, b p 0:0007 units Wi per unit Τ, SE p 0:0003, P p
:01), while those that relied more on temperature showed
reduced fitness (b p 20:001 units Wi per unit Τ, SE p
0:0002, P ! :00001). Many locations showed larger and less
predictable changes in mean fitness outcomes under the
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warming scenario than in the shift scenario (e.g., figs. 4,
5, S12).
Sensitivity Analyses

Our findings were qualitatively robust across a wide range
of model variants using different cues (daily precipitation,
daily temperature, photoperiod, quadraticmeasures of cues),
fitness functions, and fitness window durations (see the ap-
pendix, “Sensitivity Analyses”). Differences in historic data
set length did not explain a meaningful proportion of the
climatic variation across locations (see the appendix, “Sen-
sitivity to Data Set Length”).
Discussion

This model suggests two key findings. First, we see that the
evolution of phenological cueing strategies was shaped by
environmental history in broadly predictable ways across
locations (fig. 3), despite substantial variation in cueing strat-
egies within locations (figs. 2A–2H, S5). Second, evolved cue-
ing strategies showed highly variable responses to simulated
climate change (figs. 4, 5).
Predictability and Variation in the Evolution
of Phenological Cueing Strategies

The observation that similar mean strategies evolved in
locations with similar climates likely reflects continental-
scale spatial patterns in the relative reliability of tempera-
ture, precipitation, and day cues (fig. 3). The spatial auto-
correlation of evolved strategies indicates that evolution
tended to produce similar phenological cueing strategies
under similar environmental histories. Ourmodel assumes
that selection will favor cues based on their ability to pre-
dict future environmental conditions that are relevant to
fitness—both the ability to consistently trigger a phenolog-
ical response ahead of favorable conditions and the ability
to avoid triggering a phenological response ahead of unfa-
vorable conditions. Thus, this result suggests that broad
patterns in phenological cue use may be predictable based
on the relative information content of different cues.
Across locations, we observed a broad and complex range

of strategies evolving in response to real-world climatic data.
In some locations, this resulted in strategies that relied
heavily on climatic cues to track factorable climatic cues
across year-to-year variation (e.g., figs. 2, S5). In other loca-
tions, this resulted in the evolution of bet-hedging strategies
with a greater reliance on climatically invariant day-of-year
cues (e.g., figs. 2, S5). While broad patterns of phenological
cue use may be predictable based on the relative reliability
of environmental cues in an organism’s evolutionary his-
tory, simple climatic or location variables were only mar-
ginally successful at characterizing the relevant differences
between locations in our model, and the majority of ob-
served variation in evolved cue use could not be explained
by a model including all evaluated climatic and location
variables (appendix, “Analysis of Explanatory Factors”;
figs. S10, S11). This likely reflects the fact that most of
the a priori descriptive variables we used were too coarse,
static, or general to capture the aspects of climatic predict-
ability that are most relevant to our model organisms. For
example, many of these descriptive variables were metrics
of annual climatic variability averaged across years, and
such general descriptors likely failed to capture the specific
predictability of cues inmost relevant part of the season for
our model organisms.
In addition to the variation we observed in mean cueing

strategies between locations, we also observed substantial
variation in evolved cueing strategies across simulations
Figure 2: A–D, Ternary plots illustrate proportional cue use at the time of response for four selected locations. Each point represents the mean
strategy at the end of one simulation; each strategy is represented as a composition of the trait effects (Τ) in percentages, representing relative
cue use. Point color reflects geometric mean fitness of genotypes across all years of the climate as a percent of the maximum observed geometric
mean fitness (W) for each location. Simulations within 10% of the maximum observed geometric mean fitness in each location are shown as
triangles and included in a gray convex hull. All other points are shown as circles. Ternary plots for all 78 locations are presented in figure S5,
and locations are described in supplemental table 1 (both are available online). E–H, Geometric fitness in the three-dimensional trait space of
our organisms, with each dimension representing phenological sensitivity to a different cue (where low trait values mean high sensitivity). For
each location, the yellow region represents strategies that were at or near the highest observed fitness. This region generally spans a wide range
of trait values, reflecting the breadth of potentially successful trait combinations. These plots show that diverse genotypes can produce similarly
high fitness phenotypes. To generate these plots, we evaluated a 100#100#100 grid spanning trait values ranging from the 10th to the 90th
percentiles of observed cues in each location for fitness and response day in each recorded year of climate. I–L, Response similarity is plotted for
the same trait ranges in each location. Response similarity is a metric that quantifies the proportional similarity of phenological responses for
each trait combination (genotype) compared with the phenological responses of the trait combination with the maximum geometric mean
fitness across all available years. We calculate the response similarity as one minus the proportional response dissimilarity, which was defined
as the mean distance (in days) between the response day of each genotype compared with that of the fittest genotype, divided by the greatest
distance in each year. Bands of high similarity spanmost of the trait space, demonstrating that many different combinations of traits can lead to
similar response phenologies. Comparisons with E–H show that regions of high response similarity generally overlap with regions of high fit-
ness, illustrating that the observed similarity in fitness between diverse strategies is generally due to the expression of similar phenological phe-
notypes rather than alternative phenotypes with equivalent fitness.
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within locations (figs. 2A–2D, S5). This variation emerges
because a wide range of trait value combinations (i.e., cueing
strategies or genotypes; fig. 2A–2D) yield similar response
phenotypes (e.g., fig. 2I–2J) with similar fitness outcomes
(e.g., fig. 2E–2H). This is a fundamental consequence of
multicue integration when there are correlations among
climatic cues; when these conditions are met, changes in
one component of a cueing strategy can often be compen-
sated for through changes in another. This feature of cue
integration can lead to a broad range of multicue strategies
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Figure 3: Evolved strategies show spatial autocorrelation in relative cue use (trait effect, Τ); similar strategies evolve in nearby locations with
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each of 78 locations across all years. Evolved strategies show significant positive spatial autocorrelation (Moran’s I) in reliance on day (B), tem-
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that can appear counterintuitivewhen singular cue responses
are examined in isolation (cf. Chevin and Lande 2015). This
fundamental property of multicue integration predicts that
organisms showing similar phenologies under historical
climates could have widely divergent underlying phenolog-
ical strategies that use different cues to different degrees.
This prediction is consistent with the findings of empirical
studies demonstrating differences in cue use between in-
teracting species that generally show phenological syn-
chrony (e.g., Iler et al. 2013).
This fundamental consequence of cue integration is fur-

ther complicated by nonadditive interactions among traits
in our model. This is partly due to our response threshold
model, which creates inherent nonlinearities in the rela-
tionships between traits and the phenotype. It also reflects
the variable nature of real-world climatic dynamics across
each year, which cause the effects of one trait to depend on
the effects of the other traits in an individual’s genotypic
background in complex and nonadditive ways. As an ex-
treme example, a trait that confers a very high sensitivity
to one cue can nullify the effects of other cues, because even
a small value of one cue will cause the organism to exceed
its response threshold. More generally, the effects of any
trait on both phenotype and fitness depend on the other
traits in the organism’s strategy and the seasonal dynamics
of its environment. These nonadditive interactions between
traits are akin to epistasis (Phillips 2008) and create the po-
tential for a more diverse and complex range of cueing
strategies with similar fitness outcomes in any given loca-
tion (Fenster et al. 1997).
Novel Climates Result in Ecological Surprises

Our second key finding is that phenological strategies that
produced similar phenotypes under historical conditions
showed strong phenotypic and fitness differences under
simulated climate change (figs. 4, 5, S11). These effects de-
pended on the degree to which our climate scenarios broke
key correlations in the historic climate. In the shift sce-
nario, temperature and precipitation regimes were advanced
in unison, and so the correlations between temperature and
precipitation were unchanged. Thus, organisms that were
more sensitive to climatic cues showed greater phenologi-
cal advancement and more positive fitness consequences,
while those that relied more heavily on climatically invari-
ant day-of-year cues showed reduced advancement and
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Figure 4: Variability ofmean phenological responses to climate change scenarios and their fitness consequences across locations (see also fig. 5
for variation across simulations within locations). Changes in phenology and mean fitness under a shift scenario (A), where both temperature
and precipitation regimes advance by 5 days, and under a warming scenario (B), where temperatures are warmed by 37 across the year. Under
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more negative fitness consequences (figs. 4, 5, S11). This
result is consistent with expectations about the costs of us-
ing invariant day-of-year (e.g., photoperiodic) cues under
climate change (Coppack andPulido 2004;Way andMont-
gomery 2015). However, in the warming scenario, greater
reliance on the invariant day-of-year cue was generally fa-
vorable, while organisms that relied more on temperature
unexpectedly showed reduced fitness (figs. 4, 5, S11). This
result occurs because the warming scenario increased tem-
peratures independently of precipitation, thus breaking his-
toric correlations between temperature- and precipitation-
based factors. Becausefitness is a functionof both temperature
and precipitation in our model (fig. S2), the warming sce-
nario changed the seasonal fitness landscape in complex
and novel ways. These changes to the seasonal fitness land-
scapemade the fitness consequences of phenological advance-
ment less predictable. As a result, many locations showed
large and counterintuitive changes inmeanfitness outcomes
under the warming scenario (figs. 4, 5, S11).
A comparison of the shift and warming scenarios sug-

gests some general insights. The specificways inwhich these
two scenarios differed had important consequences. The in-
creasedunpredictability offitness responsesunder thewarm-
ing scenario suggests that even a relatively small decoupling
of the historical temperature and precipitation regimes could
increase the likelihood and costs of maladaptive plasticity.
These results are consistent with the hypothesis that or-
ganisms are more likely to showmaladaptive and counter-
intuitive plasticity in environments that differ most from
those in their evolutionary history (Ghalambor et al. 2007;
Chevin et al. 2010; Reed et al. 2010; McNamara et al.
2011; Chevin and Lande 2015; Duputié et al. 2015). Thus,
while intuition suggests that a greater reliance on climatic
cues (as opposed to climatically invariant cues) would allow
for more adaptively plastic responses to a changing climate,
our findings suggest that this may not always be the case.
At the intersection of our two key findings, a wide range

of strategies that show predictable and consistent behavior
under historical conditions can show unpredictable and
counterintuitive behavior in a novel environment. This is
consistent with the idea that multicue phenological strate-
gies create the potential for cryptic genetic variation to be
expressed under climate change. Cryptic genetic variation
is genetic variation that is not normally expressed but that
can yield phenotypic variation under changed conditions
(Rutherford 2000; Gibson and Dworkin 2004; Gibson and
Reed 2008; McGuigan and Sgrò 2009; Paaby and Rockman
2014). Cryptic genetic variation appears to be widespread
in eukaryotes and may be particularly characteristic of sys-
tems where response thresholds provide a mechanism of
“genetic buffering” (Rutherford 2000). In the context of
our model, the mechanisms that maintain genotypic varia-
tion while minimizing fitness differences under historic cli-
mate conditions could contribute to the maintenance of
cryptic genetic variation, increasing the potential for eco-
logical surprises under novel climates.
Context and Broader Implications

Our model examines the evolution of multicue strategies
and its implications for variation in phenological responses
to climate change. Previous studies have identified impor-
tant patterns of phenological shift in nature (e.g., Parmesan
2007; Thackeray et al. 2010) and examined the behavior
of increasingly complex phenological cueingmodels under
increasingly realistic simulated environments (e.g., Reed
et al. 2010; McNamara et al. 2011; Chevin and Lande 2015).
Our current study provides a complementary approach
to examine how evolution and cue integration could affect
patterns of variation in phenological shifts. We find that
phenological cueing strategies that evolve in the context
of real-world climatic data show patterns of cue use that
can be broadly understood in the context of cue reliability,
consistent with previousmodeling studies (Reed et al. 2010;
McNamara et al. 2011). However, these evolved patterns of
cue use can also show a great deal of complex and some-
times cryptic variability, consistent with our understanding
of multicue integration from previous models (e.g., Chevin
and Lande 2015). This variability in evolved cue use can
lead to high variability in phenological responses to climate
change, with phenotypic and fitness consequences that are
increasingly difficult to predict under increasingly novel
climate regimes. This result is consistent with expectations
about the limits of adaptive plasticity in novel environments
(e.g., Ghalambor et al. 2007; Chevin et al. 2010; Duputié
et al. 2015) and suggests that many organismsmay show in-
creasingly counterintuitive responses to climate change.
Our model results suggest that we should expect to see

substantial variation in phenological shifts, even if organ-
isms experience similar environmental changes. Chmura
et al. (2019) proposed a key distinction between organismal
and environmentalmechanisms of variation inphenological
Figure 5: Variability of mean phenological responses to climate change scenarios and their fitness consequences across simulations within
locations (see also fig. 4 for variation across locations). This figure is constructed like figure 4 but shows changes in phenology and mean fitness
for each of 30 simulations from four example locations (rows) under both the shift scenario (left; A, C, D, G) and the warming scenario (right;
B, D, F, H). Each colored circle represents the mean response of a single simulation relative to the historical condition, represented by a black
triangle. The color of each circle represents the historical trait effect of day (Τday), indicating the relative use of a climatically invariant cue. Note
differences in the scales of the vertical axes between the shift scenario and the warming scenario.
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shift, with the former driven by differences among organ-
isms in their sensitivity to cues and the latter driven by dif-
ferences in the environmental change that different organ-
isms experience. In this context, our model is focused on
the evolutionary origins of variation in organismal mecha-
nisms. In our climate change scenarios, we control and hold
constant the environmental change that each population ex-
periences. As a result, the substantial variation in phenolog-
ical responses to climate change observed in our simulations
is driven by differences in cueing strategy. The results of our
model suggest that even when we limit the potential mech-
anisms of variation in phenological shifts, evolved differences
in cueing strategies would contribute to a great deal of ob-
served variation in phenological responses to climate change.
Scope, Aims, and Limitations

Our model was developed to explore general mechanisms
for the variability of phenological shifts and does not at-
tempt tomake quantitative predictions about the evolution
of cueing strategies at specific locations for any specific or-
ganism. For example, the patterns of cue use shown on the
map in figure 3A represent only one possible model out-
come, generated under one set of model parameters and
assumptions. In the absence of a specifically parameterized
model, these results should not be interpreted as meaning-
ful predictions for any given system.We present this figure
as an example to illustrate a more general finding—that
similarmean strategies tend to evolve in locationswith sim-
ilar climates, while different strategies tend evolve under
different environmental histories. Unlike specific patterns
of cue use in specific locations, this is a robust result that
we see across a wide range of model parameters. More spe-
cific questions will require more detailed models, and we
hope that this general theoretical framework will encour-
age more specific studies in the future.
Future Directions

Future studies could extend thismodel by increasingmodel
complexity or evaluating our general findings in specific
systems. Potential extensions of this model include model-
ing organisms with alternative life histories, using a broader
range of environmental cues, considering more complex
cue integration mechanisms, allowing sexual recombina-
tion of traits to increase standing genetic variation, or al-
lowing gene flow between locations. It would be particularly
useful to study whether more complex cueing strategies
could allow greater resilience or robustness in the face of cli-
mate change. However, our ability to apply models to make
predictions relevant to specific systems is likely to be more
limited by our current knowledge of key parameters in spe-
cific systems rather than our ability to develop more com-
plex models. Future empirical and observational studies
could build a groundwork for these studies by identifying
key cues and cue integration mechanisms and by docu-
menting variation in phenological cueing strategies within
and across populations.
While we used different locations to represent different

environmental conditions in this model, the general find-
ings of this model could also potentially be extended to
consider other factors that structure the availability of en-
vironmental cues, such as microhabitats or life histories.
Two organisms in the same location may experience very
different environmental conditions, potentially structured
by their microhabitat, life history, trophic position, body
size, or other factors. For example, the general findings
of our model could potentially be applied to observed dif-
ferences in phenological shifts correlated with phyloge-
netic groups (e.g., Parmesan 2007; Davis et al. 2010; Thack-
eray et al. 2010; Davies et al. 2013). Parmesan (2007)
speculated that the particularly strong and variable pheno-
logical shifts of amphibians could be due to their particular
reliance on precipitation-associated cues. Similarly, Davis
et al. (2010) hypothesized that phylogenetic patterns in
flowering time shifts could be caused by differences in cue
use, potentially reflecting differences in the reliability of dif-
ferent cues in the evolutionary histories of different taxa.
The results of our model are consistent with these hypoth-
eses and the expectation that organisms exposed to differ-
ent environments over their evolutionary history will evolve
different phenological cueing strategies with consequences
for their phenological responses to climate change.

Conclusion

The two key findings we report here are robust across a
range of model parameters and appear to be rooted in fun-
damentalmechanismsofmulticue integration and the com-
plexity of real-world climatic correlations. This suggests
that similar mechanisms could potentially occur in a wide
range of systems (e.g., Beshers and Fewell 2001; Wilczek
et al. 2010; Seeholzer et al. 2018; Chmura et al. 2019) and
that examining the reliability of cues in an organism’s evo-
lutionary history could provide a useful starting place for
understanding current phenological cueing strategies. Un-
derstanding current phenological cueing strategies could
potentially improve our ability to predict and respond to
future phenological shifts. However, these results also sug-
gest that the nature of cue integration may put fundamen-
tal limits on our ability to predict the responses and fitness
outcomes of organisms living under novel climatic regimes.
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